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When Lorentz invariance is ignored, internal symmetries which are violated in a given way, and which are 
independent of the space-time symmetries, can be rewritten in terms of a larger group which contains 
the internal group and the time-translation group in a coupled (noncommuting) way. This rewriting can be 
chosen so that the noncommutativity of the time-translation and internal groups sphts the mass degeneracy 
of internal multiplets, i.e., accounts for what was previously called ''violation" of the internal group. This 
procedure is illustrated explicitly for the SU(3) baryon octet with octet symmetry violation. When Lorentz 
invariance is required, the coupling of internal and space-time symmetries becomes more difficult. A global 
and more general proof is given of McGlinn's result that in a larger group 9 whose generators are those of 
the Poincar^ (i.e., inhomogeneous Lorentz) group and an internal group, for certain internal groups the 
commutativity of the (homogeneous) Lorentz and internal subgroups implies the commutativity of the 
space-time translation and internal subgroups. In addition, it is shown that in such a group g, which has an 
internal group for which the commutativity of the Lorentz and internal subgroups does not imply the 
commutativity of the translation and internal subgroups, the internal multiplets still remain degenerate in 

1. INTRODUCTION 

THE recent history of particle physics is to a large 
extent the story of suggested internal symmetries, 

i.e., symmetries not related to space-time, which must 
be considered to be violated by small or large amounts in 
order to yield predictions which agree reasonably well 
with experimental data. Symmetries which are not exact 
also occur in other fields of physics; for example, the 
external electric and magnetic fields of the Stark and 
Zeeman effects in atomic physics violate rotation 
symmetry. However, the amount of violation of sym
metries of the kind just cited has a clear experimental 
origin, and the degree of violation can be varied, and 
even reduced to zero, in contrast to the situation in 
particle physics. If the internal symmetries now con
sidered in particle physics have a fundamental sig
nificance, one might expect that they would have some 
connection with the space-time symmetries, and that 
there would be some sense in which they would be 
exact. It seems worthwhile to consider some possibilities 
and some difficulties of achieving these two desiderata, 
even if one is not certain that the presently known 
internal symmetries are the true ones. 

If we ignore the requirements of Lorentz invariance, 
we can strightforwardly translate an internal symmetry 
and a given way of violating this symmetry into a 
description in which there is a larger group of sym
metries, including both the internal group and the time 
translation group, which is exactly represented. What 
was previously called *'violation" of the symmetry, as 
evidenced by splitting of the mass degeneracy of the 
particles in an internal multiplet, now appears as non
commutativity of the internal and time translation 
subgroups. As an illustration of this possibility, in 

Sec. 2 we translate SU(3) symmetry with octet violation 
into an irreducible representation of a larger group in 
the baryon octet. We obtain the Gell-Mann mass for
mula as an exact relation in this representation. 

In a recent paper,^ McGlinn has made the important 
observation that because the Poincare group (P (i.e., 
the inhomogeneous Lorentz group) is a semidirect prod
uct in which the (homogeneous) Lorentz group £ acts 
on the translations, noncommutativity of the transla
tion group ^ with the internal group £f may require that 
the Lorentz and internal groups also fail to commute. 
Under the condition [i3,i?3—0? ^^^ with some further 
restrictive assumptions, McGHnn proved that [^,^] = 0, 
so that the mass degeneracy of internal multiplets 
could not be split. McGlinn^s method of proof used the 
Jacobi identity for the generators of the larger group g, 
whose generators are the generators of (9 and £̂ , and 
required that the internal group be a finite dimensional 
semisimple Lie group. We give an alternative proof of 
McGlinn's result in Sec. 3. Our proof is valid for quite 
general internal groups. Our analysis uses global group 
properties only, and brings forward the way in which 
the action of £ on T* enters the problem. We also con
sider the possibility of noncommutativity of the repre
sentatives of (P and ^ in the ray representations of g. 
Finally we point out that even in those cases in which 
[ ,̂£^^7^0 is allowed the type of noncommutativity 
which occurs does not lead to splitting of the mass 
degeneracy of internal multiplets. 

The preceding paragraph indicates that, under certain 
specific conditions, space-time and internal symmetries 
cannot be coupled in a nontrivial way. Nonetheless, we 
believe that such a linking of space-time and internal 
symmetries can be carried out if some of these conditions 
are relaxed.^ Among the conditions to be relaxed is the 

* Work supported in part by National Science Foundation 
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^ W. D. McGHnn, Phys. Rev. Letters 12, 467 (1964). 
2 p Coester, M. Hammermesh, and W. D. McGlinn, Phys. 

Rev. 135, B451 (1964), have suggested that the requirement 
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restricition that Q have as generators only the generators 
of (P and of ^, or in global terms, that each element in g 
have the unique decomposition g~pi, pin 6̂ , and iin ^. 
We hope to discuss the situation when this restriction is 
relaxed in a later article. 

2. MODEL OF OCTET VIOLATION OF SU(3) 
IN THE BARYON OCTET 

In this section we give an exact eightfold representa
tion of a large group, which contains time translations 
and SU(3) as noncommutative subgroups, and in which 
the "violation" of SU(3) is due to this noncommuta-
tivity. We ignore Lorentz invariance in this section. 
In this discussion our aim is to translate the usual 
approximate SU(3) symmetry into an exact symmetry 
involving a larger group with coupled time translation 
and SU(3) symmetry. We do not derive either the SU(3) 
symmetry or the octet violation of i t ; analogous models 
could be constructed for other groups and other types 
of violations. 

We present our model in terms of the Hamiltonian 
(generator of time translations) and the SU(3) genera
tors. We assume that our Hamiltonian H has the eight 
baryons as eigenvectors with their observed masses 
(neglecting electromagnetic mass differences). 

H\N)^MN\N}, 

H\i:)=M2\X}, 

H\A) = MA\A), 

H\S) = M^\S}. 

We assume that the SU(3) generators are represented 
in the space of the eight baryons, and that these genera
tors change the mass as well as the particle species. For 
example, using the notation of Behrends, Dreitlein, 
Fronsdal, and Lee,^ 

6 ^ E i | ^ ) = | ^ ) , 

etc. The complete table of the action of the generators 
on the baryon octet is given in Table VII of the cited 
paper.^ To introduce octet violation of SU(3), we require 
the existence of an SU(3) scalar operator L, which is 
related to H by octet violation terms: 

L=H+aY+p[P- ( F V 4 ) ] , 

where Y is the hypercharge, I is the isospin vector, and a 
and 13 are numbers to be determined by requiring that L 
rommute with all generators of SU(3) in the eightfold 
cepresentation. This calculation is straightforward. 

[J3,^]==0 should be replaced by [(P,^i] = 0, where Hi are the com
muting generators of ^ whose eigenvalues in a multiplet are the 
internal quantum numbers of the multiplet. We thank Dr. Hamer-
mesh for an instructive conversation, and for making this paper 
available prior to publication. We hope to apply our global 
approach to analyze the requirement [(P,Ft] = 0. 

3 R. E. Behrends, J. Dreitlein, C. Fronsdal, and W. Lee, Rev. 
Mod. Phys. 34, I (1962), Table VII, p. 33, 

From 

and 

we find 

Then from 

[ L , £ J | S 0 ) = 0 

Ci: ,£3] |A)=0, 

I3 = MS-M2+MN-MA. 

[ i : , £ J i S » ) = 0 , 

the Gell-Mann mass formula, 

UMN+M^) = 1(3MA+M2) 

results, and L is an SU(3) scalar. 
The octet of physical baryons with their observed 

masses is the basis of the above irreducible representa-
tation of the direct product {e^-^^}0SU(3). The mass 
formula is an exact relation for this representation. 

We would like to point out an analogy between the 
Hamiltonian and Langrangian in relativistic theories 
and the operators H and L in our model of an SU(3)-
invariant theory. In a relativistic theory, the Hamil
tonian density is not a scalar under the Lorentz group, 
but the Lagrangian density, which is closely related to 
the Hamiltonian, is. Analogously, in the SU(3)-
invariant model, the operator H (the Hamiltonian) is 
not an SU(3) scalar, but L, which is closely related to 
it, is. Thus the operator L plays a role analogous to that 
of the Lagrangian. 

Concerning the structure of the Lie algebra associated 
with our model, we point out that although L together 
with the eight generators of SU (3) form a nine-dimen
sional Lie algebra, the operator H is not in this algebra. 
If H is added to this set of nine generators, the com-
muterors of H with the SU(3) generators give new 
elements which belong to neither the group {e^^^}, nor 
the group SU(3). 

3. CONDITIONS UNDER WHICH COMMUTATIVITY 
OF THE LORENTZ AND INTERNAL GROUPS, 

C£,£r]=0, IMPLIES COMMUTATIVITY 
OF THE TRANSLATION AND 

INTERNAL GROUPS, 
Cr,^]=o 

We consider an abstract group g which is composed 
of the restricted^ Poincare group (P=JuXT (i.e., the 
inhomogeneous restricted Lorentz group) and a group 
of internal transformtaions ^ in a way which we now 
make precise. We assume that an arbitrary element of 
9 has the unique form 

g - ( a , A , ^ ) - ( a ) [ A ] { f } , (1) 

where {a)={a,l,e), [A]= (0,A,e), and {i}=(0, l , i ) are 
elements in 5", £ , and T̂, respectively, and (0), [ 1 ] , 
{e} are the respective unit elements. We will omit the 

* By restricted^ we miean the group without the luversIonB^ 
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brackets around these elements when no confusion will 
result. We assume the usual group multiplication laws 
for(P 

{ai){a2)^{ai+a2)j (2a) 

[Ai][A2]=[AiA2], 

[A](a)={Aa)[A] . 

(2b) 

(2c) 

We assume that ^ is a subgroup, so that multiplication 
in ^ is closed: 

{n} {̂ '2} = {̂ 1̂ *2}. (3) 

We assume that the elements of the internal group 
commute with the elements of the Lorentz group^ 

The right-hand side is 

- 0(^)Aa,X(Aa,i),r(A(j)OCA] 
= (t(i)Aaj\(Aaji)AjT (Aa)i). 

Because of the uniqueness of a group element ex
pressed in this form, we get three equations for our 
correspondences: 

t{i)Aa = At(i)a, 

\(Aa,i) = AX(a,̂ )A~"̂ , 

T(Aa)i^T(a)i. 

(8) 

(9) 

(10) 

{i}[A]=CA]W. (4) 

Finally, we assume that the product of an element of 
the internal group times a translation is an arbitrary 
element in the group^: 

{i} (a) = (tii)a,\ (a,i)l,T(a)i), (5) 

and that t(i)a is measurable in a. The correspondence 
t{i) takes a translation (a) into a new translation 
a' = t{i)a and the correspondences \{a,i) and T{a) act 
in similar ways. Aside from the measurability prop
erty just mentioned, no special properties of these 
correspondences, such as linearity, are assumed. In 
the sequel we will suppress the transformation 1 on 
which X(a,i) acts. If in Eq. (5) either the element i is 
the identity of the group ^ or the element a is the identity 
of the group T then the equation should give a trivial 
result, which leads to two sets of three boundary condi
tions on our correspondences. These conditions are 

^( t )0=0, X(0 , i ) -1 , T{^)i^i, (6) 

from the zero space-time translation, and from the 
identity of the internal group, 

t(e)a=a, X(a,e)=l, T(a)e=e. (7) 

We now apply the requirement of associativity to 
our group, and derive nine equations which our cor
respondences t, X, and T must satisfy. The derivation of 
these requirements is straightforward; therefore, we 
will give only the derivation for the first three equations 
and then list the remaining ones. 

Consider the effect of the associativity equation 

({t}[A])(a) = {i}(CA](«)). 

The left-hand side is 

({ t}CA])(a)=[A]({i ) (a) ) 
= \^A2(t(i)a,\(a,i),7\a)i) 

= (At(i)a,A\(ayi),T(a)i). 

Our next set of three equations is derived from the 
equation 

({n}{i2}){a)={H)({i,}{a)) 

in a similar manner. These equations are 

t(iii2)a= t(ii)t(i2)a, (11) 

\(a,iii2) = \it(i2)a,ii)\(ayi2), (12) 

Tia){Hi2)-^(Tit(i2)a)ii)(Tia)i2). (13) 

Finally our last three equations are derived from the 
equality 

({i}(a^))(a2) = {i}aa^)(a2)), 

and these equations are 

t(i) (ai+a2) = t{i)ai+\ (ai,i)t(T(ai)i)a2, (14) 

X (ai+a2yi) = X (ai,i)X(a2,T (ai)i), (15) 

T(ai+a2)i= T(a2)T(ai)i. (16) 

This exhausts the set of independent equations. 
To study the correspondence T, we consider Eqs. 

(10), (16), and (6). For any translation a, these equa
tions imply 

i= T{0)i= T(a-a)i= T(a)T{-a)i 

- T{a)T(-Aa)i= T{a~Aa)i. (17) 

For a time-like, we can choose A in such a way that 
a—Aa is any space-like vector. Similarly, for a space
like, we can make a—Aa any time-like or light-like 
vector. Thus Eq. (17) implies that T is trivial: 

T{a)i^i, (18) 

for all a and i. The analysis leading to Eq. (18) can be 
summarized by saying that there are no proper in
variant linear subspaces in the group T under the action 
of the group £ . 

Next, we study the correspondence X, using Eqs. (9) 
and (15). We rewrite Eq. (15) in a new form using the 
fact just proved that T is trivial: 

^ Our Eq. (5) makes no assumption that either (P or ^ is normal 
in 9 ,i.e., that 9 is a semidirect product of either of (P or ^ by the 
other. The requirements that (P be normal in 9 are that T(a)i=i, 
and t(i) maps T onto ST. The requirements that ^ be normal in 9 
are that t(i)a=a, X(a,i) — 1, and 1^(0) maps ^ onto ^. 

X iai+a2ji) = X ((Zi,i)X (^2,^). (15') 

Equation (15') states that the \(ayi) are an abelian 
subgroup of the Lorentz group, and Eq. (9) states 
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that this subgroup is invariant. However, the Lorentz 
group is simple/ i.e., has no nontrivial invariant sub
groups, and therefore the X's which enter in Eq. (150 
are either the whole group <£, or just the identity. 
Since £ is not abelian, it cannot satisfy Eq. (15'). 
Therefore the only possiblity is 

X(a,i)^i, (19) 

for all a and i, and thus the correspondence X must be 
trivial. 

The only equations that remain to be analyzed are 
Eqs. (8), (U) , (14), and (7). We rewrite Eq. (14) in 
order to take account of the fact that the correspond
ences T and X must be trivial: 

t(i) (^1+^2) = /( i)ai+/( t)a2. (14') 

With the assumption [stated below Eq, (5)] that t(i)a 
is measurable in a, Eq. (14') states that the correspond
ence t is linear, and Eq. (8) states that this linear 
transformation commutes with all Lorentz transforma
tions. Therefore the linear transformation t must be a 
multiple of the identity which can depend only on the 
element i of the internal group; 

t{i)a=-c(i)a, (20) 

where c (i) must be a real number to preserve the reality 
of the elements of T, Equations (11) and (7) now state 
that the numbers c(i) form a one-dimensional repre
sentation of the internal group d: 

o(iii2) = c{ii)c(i2), c{e) = 1. (21) 

Therefore, in order to have a nontrivial (i.e., non-
commutative) combination of the Poincare and inter
nal groups, there must exist a nontrivial real one-
dimensional representation of the internal group ^. 
For this to occur there must be a homomorphism which 
maps the group ^ onto the real numbers, which are 
an abelian group. Thus, the group ^ must have a non-
trivial abelian factor group. In the event that this 
occurs, the internal group element multiplied by the 
translation element will have the new form shown in 
Eq. (50 : 

{i}{a)-^(c({)aXi)^(c(i)a){i}, (50 

We summarize this group theory result as a theorem: 
Theorem. Let g be any group which is composed of 

the restricted Poincare group and an internal group ^ 
in a way made precise by Eqs. (1) through (3). If 
the internal group commutes with the (homogeneous) 

«E. P. Wigner, Ann. Math. 40, 149 (1939), espedall}^ pp. 
167-168. 

Lorentz group £, [ ^ j ^ ] = 0 , then (a) if the internal 
group has no nontrivial real one-dimensional representa
tion, the internal group also commutes with the space-
time translation group, [£^,'r]=^0, so that g is the 
direct product g=^(8)6^, or (b) if the internal group 
has a nontrivial real one-dimensional representation, 
the lack of commutativity with T is given by 

{i}{a)===(c({)a){i}, (22) 

where the real numbers c(i) are the nontrivial one-
dimensional representation of ,̂ , and Q is the semi-
direct product ^X(P. 

Since the finite dimensional semisimple Lie groups 
have no nontrivial one-dimensional representations,^ 
our case (a) includes McGHnn's result as a special case, 

The type of noncommutativity of T and ^ which can 
occur in case (b), Eq. (22), cannot lead to splitting of 
the mass degeneracy of the members of a multiplet of 
^, because the numbers c(i) are representatives of an 
abelian factor group of £f .Thus, the c{i) will be associated 
with abelian gauge transformations and cannot split 
the mass degeneracy of a multiplet. (It is the nonabelian 
elements in ^ which, in a representation, change 
particle species.) 

Except for the phase factors which occur in the ray 
representations which must be admitted in quantum 
mechanics, our results so far show that if Eqs. (1) 
through (3) are assumed, and if Ci3,^] = 0, then the 
mass degeneracy of multiplets of ^ remains valid for 
an irreducible representation of the group g. However, 
a theorem of G. W. Mackey^ assures us that no non-
trivial phase factors can occur because the Poincare 
group has no nontrivial one-dimensional representations 
and therefore we draw the physical conclusion: 

An irreducible representation of a group g composed 
of (P and ^ according to Eqs. (1) through (3), and in 
which C^,£] = 0, has exact mass degeneracy in each 
multiplet of ^. 
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